Skip to content
Have an account?
Login
or
Register
  • About
    • People
    • Fellows
    • Tastings
    • In the News
    • Awards
      • Christophe Baron Prize
      • AAWE Scholarships
      • AAWE Awards of Merits
    • Downloads
    • Contacts & Copyright
  • Journal
    • Online Journal Member Access
    • Online Journal Library Access
    • Editors
    • JWE – All Issues
    • Submission Guidelines
  • Working Papers
  • Meetings
    • 2023 Stellenbosch
    • 2022 Tbilisi
    • 2019 Vienna
    • 2018 Ithaca
    • 2017 Padua
    • 2016 Bordeaux
    • 2015 Mendoza
    • 2014 Walla Walla
    • 2013 Stellenbosch
    • 2012 Princeton
    • 2011 Bolzano
    • 2010 Davis
    • 2009 Reims
    • 2008 Portland
    • 2007 Trier
  • Membership
Menu
  • About
    • People
    • Fellows
    • Tastings
    • In the News
    • Awards
      • Christophe Baron Prize
      • AAWE Scholarships
      • AAWE Awards of Merits
    • Downloads
    • Contacts & Copyright
  • Journal
    • Online Journal Member Access
    • Online Journal Library Access
    • Editors
    • JWE – All Issues
    • Submission Guidelines
  • Working Papers
  • Meetings
    • 2023 Stellenbosch
    • 2022 Tbilisi
    • 2019 Vienna
    • 2018 Ithaca
    • 2017 Padua
    • 2016 Bordeaux
    • 2015 Mendoza
    • 2014 Walla Walla
    • 2013 Stellenbosch
    • 2012 Princeton
    • 2011 Bolzano
    • 2010 Davis
    • 2009 Reims
    • 2008 Portland
    • 2007 Trier
  • Membership
DONATE
  • Data
  • Jobs & Programs
  • Data
  • Jobs & Programs
Home
»
JWE-Articles
»
Journal of Wine Economics Volume 10 | 2015 | No. 1
»
Evaluating Wine-Tasting Results and Randomness with a Mixture of Rank Preference Models

Evaluating Wine-Tasting Results and Randomness with a Mixture of Rank Preference Models

Jeffrey C. Bodington
JEL Clasification: A10, C10, C00, C12, D12
Pages: 31-46
Abstract

Evaluating observed wine-tasting results as a mixture distribution, using linear regression on a transformation of observed results, has been described in the wine-tasting literature. This article advances the use of mixture models by considering that existing work, examining five analyses of ranking and mixture model applications to non-wine food tastings and then deriving a mixture model with specific application to observed wine-tasting results. The mixture model is specified with Plackett-Luce probability mass functions, solved with the expectation maximization algorithm that is standard in the literature, tested on a hypothetical set of wine ranks, tested with a random-ranking Monte Carlo simulation, and then employed to evaluate the results of a blind tasting of Pinot Gris by experienced tasters. The test on a hypothetical set of wine ranks shows that a mixture model is an accurate predictor of observed rank densities. The Monte Carlo simulation yields confirmatory results and an estimate of potential Type I errors (the probability that tasters appear to agree although ranks are actually random). Application of the mixture model to the tasting of Pinot Gris, with over a 95% level of confidence based on the likelihood ratio and t statistics, shows that agreement among tasters exceeds the random expectation of illusory agreement.

Subscribe to our Email List

You can cancel your subscription at any time.
SUBSCRIBE HERE

Contact

AAWE
Economics Department
New York University
19 W. 4th Street, 6FL
New York, NY 10012, U.S.A.
Tel: (212) 992-8083
Fax: (212) 995-4186
E-Mail: karl.storchmann@nyu.edu

AAWE

Journal

Working Papers as a List

Membership

Videos

LINKS

Fifthsense

JWE at Cambridge University Press

Liquid Assets

Stuart Pigott

Privacy & Cookies Policy

Privacy Policy

Cookies Policy

Twitter Facebook-f Youtube

© AAWE 2021 - All rights reserved